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Dewetting of thin films on heterogeneous substrates: Pinning versus coarsening

Lutz Brusch! Heiko Kihnel Uwe Thielel?* and Markus Bet'"
IMax-Planck-Institut fu Physik komplexer Systeme thoitzer StraRe 38, D-01187 Dresden, Germany
2Department of Physics, University of California, Berkeley, California 94720-7300

(Received 14 November 2001; revised manuscript received 2 May 2002; published 19 July 2002

We study a model for a thin liquid film dewetting from a periodic heterogeneous sub&eatelate. The
amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe
pattern, i.e., pinning, are computed. This requires a stabilization of the longitudinal and transversal modes
driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the
heterogeneity has a larger spatial period than that of the critical dewetting mode, weak heterogeneities are
sufficient for pinning. Our results imply a large region of coexistence between coarsening dynamics and
pinning.
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Templating and controlled rupture of liquid films on heterogeneity of large amplitude. Using bifurcation and sta-
chemically structured substrates have provoked many experiility analysis, we can provide, however, a more systematic
mental effortd 1—6] but the conditions for the desired imag- Study of the effects of parameters such as average film thick-
ing of the template structure onto the deposit pose manyessh, amplitudee, and spatial period®,,; of the heteroge-
open questions. First theoretical results for liquid layers omeity.
structured surfaces with strong heterogeneities of wettability, Our starting point is a homogeneous or weakly heteroge-
i.e., stepwise alternating hydrophilic and hydrophobic stripesieous substrate. We choose parameters in the unstable re-
in an aqueous system, describe different morphological trargime [cross in Fig. 1a)]. Then a striped solution of a spatial
sitions when changing the size of the heterogeneous patchegriod P= Py, is considered. For illustration we display a
or the volume of the deposited liqui@—10. Experimen-  system of length P, [see Figs. (b)-1(e)]. The periodic
tally, the challenge of preventing the dewetting pattern fromstripe pattern[Fig. 1(b)] is now unstable against several
coarsening has been met by evaporation of the solMdiit  transversa[Fig. 1(c)] and longitudinalFigs. Xd) and Xe)]
by literally freezing the systerfil2], or by using a heteroge- perturbations. Stability analysis allows us to trace the corre-
neous substratgl]. sponding eigenvalues. Increasing the strength of the hetero-

In the present paper we study the transition betweemeneity, they all will acquire negative real parts and the de-
coarsening and pinning for thin films on weakly structuredsired pattern in Fig. (b) is pinned, i.e., becomes stable
substrates that possess spatial modulations of the moleculagainst small perturbations.
interaction terms. There is no well-defined contact line for The evolution equation for the film thickness profile
the scales under investigation and consequently, we do néif(x,y,t) contains a disjoining pressure that is derived by
consider the pinning of a contact line to defects of the subeombining the Stokes equation in long wave approximation
strate surface. Here we use the term “pinning” if the liquid [20] with diffuse interface theory17],
ridges of the asymptotic film profile match the more wettable
stripes of the substrate. Thin films on homogeneous sub- ah=—V{(h—Ina)3V[Ah—a,f(h,x)]}, )
strates can be unstable to spinodal dewetting, see e.g.,
[13,14). Sharma and coworkers proposed a model that con- ¢
tains polar and apolar components of molecular interactions
and reproduced the dynamics of dewetting thin filfi§].
Recently, it has been shown that this model has periodic 4 |
stripe solutions that are unstable to coarsefir@g. Here, we
use a slightly different model derived from diffuse interface ‘=
theory by Pismen and Pomefli7]. We emphasize that this 2}
model has very similar dynamid4.8] and stationary solu-
tions[19] as the Sharma model. The impact of a heteroge-
neous substrate on the stationary film profiles, their linear ©
stability, and resulting conditions for morphological transi-
tions are presented. The dynamics of thin films on periodic FIG. 1. (a) Phase diagram for thin fiims on a homogeneous
stripe templates have been studied in R&0] with the origi-  substrateafter Ref[19]). The cross shows the parameter values for
nal Sharma model by numerical integration and for a giverwhich we present results in detaib) Schematic display of the

template(dot-dashed ling the periodic film profile with the same

spatial periodsolid line). Shaded areas show whére h. (c) Ini-
*Electronic address: thiele@mpipks-dresden.mpg.de tial stage of the transversal instability aid),(e) final stages of
TElectronic address: baer@mpipks-dresden.mpg.de variants of the longitudinal coarsening instability.

(@)

N
meta— stable
stable .

unstable

0 01 G 02 03 0 X/P, 2

het

1063-651X/2002/6@)/0116025)/$20.00 66 011602-1 ©2002 The American Physical Society



LUTZ BRUSCH, HEIKO KUHNE, UWE THIELE, AND MARKUS BAR PHYSICAL REVIEW E66, 011602 (2002

with a free energyf(h,x)=«(x)e "(e""-2)+1Gh? and 5
the ratioG of gravitation to mean molecular interactions as
well as the spatially varying strength of the molecular inter- 4
actionsk(x). a>0 is a small parameter describing the wet-
ting properties in the regime of partial wettifg7,19. This 81
dimensionless form is obtained after scaling the original =
qguantities as in Ref[19]. The molecular interactions that
become important on the nanometer sd&l&| are incorpo-
rated through the disjoining pressurg h) contained in the
derivative of the free energy,f(h,x)=—«(x)II(h)+Gh.
The choserlI(h) is qualitatively equivalent to other pres-
sures consisting of destabilizing short range and stabilizing= 1
long-range interaction$20] but does not suffer from the 07
usual divergency for vanishing film thicknef$9]. In the ) 1 2 8 xP, 4
absence of heterogeneity, the model possesses two control , , , ,

; . . — FIG. 2. (a) Stationary film profiles to Eq(1l) with P=Pyg,
parameters, the ratié and the average film thicknebsthat  4pick jing) and P=2P, ., (thin line). (b) Portraits of all solutions
is chosen as a conserved quantity. A phase diagra®and i p=p, . Only the solid profile is linearly stablec) The
h indicating the region of spinodal dewetting is shown in heterogeneity an¢d) the two coarsening modes due to translation
Fig. 1(a). (dashed ling and transfer of mas&lotted ling as sketched irta).

Heterogeneous substrates with a smooth change in th@arameters are=0.1, G=0.1, h=2.5, andP},;= 50.

wettability are modeled by a spatial sinusoidal modulation of

2 L

1 L

dh[a.ul]

the overall strength of the disjoining pressure, odal dewetting or finite (nucleation disturbances of the film
surface. Rupture due to the spinodal mechanism occurs for
k(X)=1+ecog2mX/Ppey). (2 perturbations with periods larger than a critical valég,

o _ =2mlk, with k2= —dpnf(h,x)|5 [19]. On a slower time

The system behavior is controlled by the amplitwdgnd the  scale the initially formed holes coalesce, the pattern becomes
imposed periodicityPy,; of the heterogeneity. Droplets are coarser and tends to the absolute minimum of the energy at
preferably located at minima of(x). Our choice ofx(x) the largest possibl, i.e., the system size.
introduces a single length scefge; and serves as a starting (i) Perturbation theory If the heterogeneity is switched
point for analyzing more realistic choices with several scalesgn, the flat film is no longer a solution to E€). However,

We choose the system side multiple of Pye, Use peri-  for very smalle<1 an analytical expression for the weakly
odic boundary conditions and vark=0. The energy of a varying stationary film profile can be calculated. Rewriting
striped solutiorh(x,t) is given by the Lyapunov functional the heterogeneity as(e’*he*+c.c.)/2 with Kner=27/Ppet

[19] and using the volume conserving ansh(x) = h+ a(e'kne¥
1 /L1 +c.c.)/2 withO(a) =0(e€) in Eq. (4), gives to first order in
AL
During the time evolution of a given initial film thickness

(3) € a stationary solution withw= — €eIT(h)/(k3—k?). This
solution is only valid fora<<1. ForP.< P}, the solution is
modulated in phase with the heterogeneity, whereadfor

profile this energy decreases and eventually settles in a minj-
mum when the system approaches a linearly stable stationa
solution of Eg.(1). One can determine these solutions di-

Phet the phase is shifted by. Results obtained by pertur-
tion theory are depicted in Fig(l3.

rectly by setting);h=0 in Eq.(1) and integrating twic§19],

yielding

(a4h)%+f(h,x) |dx

(i) Numerical bifurcation resultsSuppose a variety of
heterogeneous substrates with appropriate peFiggd but
different € is available and a dewetting pattern with spatial
period P=Py; is desired. We choose a linearly unstable

0=4d,,h—dnf(h,x)+C;. (4) mean film thicknes$ such that the critical wavelength of
spinodal dewetting is of the same order aB;.;. As an
The integration constant, and the spatial perio® now example we choos®.~P./1.5 with P,,=50 and G
parametrize a two-parameter family of periodic solutions,_ o 1h=2.5. This ratio 0fPpei/ P, is known to give good
i.e., periodic patterns of holes and droplets, that can be Ca{emplatmg for strong heterogeneitigk0]. The stationary so-
cuIated by continuation techniqug®3]. P can be equal to lutions with P= P}, and P=2P,, are computed2?] as e
Phet OF its multiples. Focusing on situations with conservedg jncreased using the weakly modulated solutions as a start-
liquid volume we adopt the mean film thickness ing point for the continuatiofi23]. Figs. 2a), 2(b), and 3a)
=1/L[gh(x)dx as the second parameter beside the periodshow profiles of the solutions and the bifurcation diagram
usingC, as a Lagrange multiplier. Typical film profiles are and Fig. 3b) compares the results with perturbation theory.
shown in Figs. 2a) and 2b). The weakly modulated solutions are indeed in line with the
For homogeneous substrates wéth 0, flat films are sta- results of perturbation theory. Breaking the translational
tionary solutions that, depending on mean film thickness andymmetry ate=0 gives rise to two branches of solutions
the parameteG, may be unstable to infinitely smalépin-  starting at the large amplitude solution known from the ho-
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@ T : 0 ®) ' ' sponding to translation symmetry and mass conservation.
el e — . .
op-—-"" 1 T For e#0 the translation symmetry is broken and the corre-
e £ == . . : e
,f < D sponding eigenvalue becomes negafitén solid line in Fig.
e ok T _ 3(c)]. Mass conservation is maintained and the correspond-
N C T~ ing eigenvalue remains zero for all[thick solid line in Fig.
ol N € T~ 3
w [® > = S (C)]
> o T In a larger system with = 2Py, the first stage of coars-
N 0 01 € 02 0.3 ening can be studied that is the fastest since nearest neigh-
;- N {£1© ' bors interact and the energy gain is largest. If templating
& shall be successful then this first stage needs to be prevented
RS —— by pinning. In the stability analysis of the two periods, two
™ ] new eigenvalues appear that correspond to asymmetric com-
g_ \ | binations of the Goldstone modgsee Fig. 2d)]. They rep-
. . S resent two possible modes of coarsening.

0 02 ¢ 04 0 0.002 ¢ (a) Shift of droplets towards each other caused by a com-

FIG. 3. (a) Relative energy of stationary solutions to Ha) bination of opposite translational modgdashed arrows in

with P= Py, (thick line) and P=2P,,., (thin line) versuse. A flat Fig. 2(@) and dashed curves in Figsid? and 3c)].

film at =0 yieldsE(h)~0.155. Solid curves correspond to coex- (b) Mass transfer between neighboring unmoved droplets

isting linearly stable solutiongb) Bifurcation diagram representing caused.by a combination of opposng vollume mojdissted
maximum(upper half and minimum(lower half of solutions with arrows in Fig. 2a) and doFte‘j CUrves in Flg_s(® qnd 30)].
P=P,. Thin dot-dashed lines denote results from perturbation _These mo_des have first been rec_Ogn'Zed in the C"’_‘hn'
theory and other line styles match with and Fig. Zb). (c) Eigen-  Hilliard quatlon[2§]. For smalle both eigenvalues are posi-
values\ with largest real part of the lowest energy solutions with tive, implying the instability of the wanted pattern to coars-
P=Py [thick solid branch in(a)]. Solid curves correspond to ening. The mass transfer proceeds faster than the shift of
Goldstone modes at=0 and broken curves to interaction modes droplets. But, ag increases, both become negative, render-
with period 2P. Line styles match the profiles in Fig(d). Tri-  ing the solution with period¢; linearly stable. At the two
angles correspond to period doubling bifurcations where solutionsrossing points period doubling bifurcations occur where sta-
with P=2P,., emerge. Parameters ase=0.1, G=0.1, h=2.5,  tionary solutions of period®®=2P,., emerge[compare thin
and Pp=50 that yieldsa/e~0.7. branches in Fig. &)]. Altogether, the desired pinning solu-
tion with P=P,, is linearly stable fore>0.002.

mogeneous cagdg]. Only the branch of largest amplitude The value of this criticak depends on parameters and the

possesses a phase shift. The branches of solutions in phadfcific form ofli(h). Since the two symmetries connected
cease to exist in a saddle-node bifurcatioreat0.22. with the coarsening modes are present for arbitrary choices

(iii) Energy and longitudinal stabilityThick curves in ©f I1(h) the qualitative behavior does not depend on this
Fig. 3(a) compare the energidsalculated with Eq(3)] of choice. Accordlr)gly, two pairs qf.solunons witR= 2P,
the different solution branches given in Figbs For the aPpear in any given system at finée _
chosen parameter values the solutions in phase have always a 1hese four branches of solutions wif=2Py [thin
larger energy than the ones out of phase. When increasing CUrves in Fig. 8)] have the following Imear_ gtab|l!ty. Solu-
the energy of the lower branch decreases further indicatin§Ons on the dotted branch carry two positive eigenvalues.
that the heterogeneity favors this pattern Witk Pp,,. Thin he short—dashed' branch has still one posmve_elgenvalue
curves in Fig. 8) denote solutions witlP = 2P, .. To gain tha_t leads to a shift of the pattern towards soluthns of_the
more insight into the conditions of pinning the pattern by aS°lid branch. The long-dashed branch has one positive eigen-
heterogeneity, we analyze the linear stability of the stationar alue and is a saddle that divides ev_olutlons by translation of
solutions in systems of different sizEa4]. For the stability WO droplets towards one on the solid branch or back to the
analysis of periodic solutions, one usually employs a FloqueP’ = Phet branch. The entire thin solid branch is linearly
ansatz. This enables us to get the stability of periodic soluStable inL=2P. and represents the coarse solution com-
tions in large systems corresponding to large ratios Peting with the desired patterfsee Figs. (e) and 2a)].
=L/Ppe. We find, however, that the most dangerous, potenHere, at largen, the coarse profile of lowest energy emerges
tially unstable longitudinal modes that induce coarsening offom the translation mode, whereas for smaller mean film
dewetting films are already present in systems rier2.  thicknessesh{<2 for G=0.1) the coarse profile correspond-
Hence, we constrain the discussion to system sizes ing to the transfer mode is stablsee Fig. 1d)] and has
< 2Pyt in x direction. In the transversgldirection, we had  lowest energy 25].
to use much larger lengtk 30P,; for a stability analysis, (iv) Coarsening versus pinning\s seen in(iii), coarsen-
see below. ing is favored fore<0.002 and solutions witkP= 2P, are

In the shortest system, i.el,=P;.;, the entire lower the only stable ones. Consequently, they also have the lowest
branch in Fig. 8) is linearly stable, whereas the two other energy(for L=2P,,.,). For e>0.002, multistability between
branches are unstable. Fer 0 the linearly stable solution linearly stable solutions witf? =P, and P=2P,,.; occurs
possesses two zero eigenvalu&woldstone modgscorre-  and the initial condition selects the final dewetting structure.
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FIG. 4. Morphological phase diagram of templating showing
regions in the parameter plane,P,.,) with different behavior of
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+c.c]. We observe a long wavelength instabiliigeminis-

cent of the Rayleigh instabililyat smalle on a length scale
much larger than the longitudinal modes. The most danger-
ous branch of transversal perturbations emerges from the
zero eigenvalue representing mass conservation in the film.
For e=0.001 for instance, we found that the fastest growing
mode had a wavelength of900= 18P, [see Fig. 1c)].

The transversal modes are stabilized for parameters above
the solid curve in Fig. 4. For the present choicdfh) and

G,h the transversal instability restricts the stability range of
the pinned solution more than longitudinal coarsening.

(vi) Summary We have studied the conditions for suc-
cessful templating or pinning of thin films that are unstable
to spinodal dewetting. A periodic stripe pattern can be pinned

the thin film on a heterogeneous substrate. The shaded band sephihe heterogeneous substrate suppresses the transverse and

rates parameters of pure coarsening from pure pinf22g Inside

longitudinal instabilities typical for a homogeneous sub-

the shaded band multistability is found with the desired patterrstrate. While previous studies have employed direct numeri-
being the energetic minimum inside the dark shaded area. Parargal simulation to study the dynamics of thin films, we have

eters areazO.l,GzO.leZ.S, andP.~33. The triangles corre-
spond to the equivalent symbols in FigaB

Below e~0.157 the coarse solution has lowest energy,
whereas at larges the desired pinned pattern is energetically

favored. Choosing suitable initial conditions enables pinnin
at much smallee. But coarsening will still occur at larger
if initial conditions are chosen accordingly. At even larger
e>0.5 the pinned pattern is the only possibility because th
coarse solutions cease to eXigg].

Summarizing the results for a range Bf; at fixed G

=0.1 andh=2.5 we obtain the “morphological phase dia-
gram” Fig. 4. Coarsening prevails for low values of
€* Phet/ P, While for large values the pattern pins to the
heterogeneity as desir¢@d2]. At intermediate values multi-
stability is found where the initial condition selects the final
outcome.

(v) Transversal stability The transversal stability of the
pinned profiles P=P,.) can be obtained from the eigen-
values N of small perturbations sh(x)expt)[exp(ky)

used numerical bifurcation and stability computations. This
allows an efficient scanning of parameters characterizing the
heterogeneous substrate and the film dynamics. Comparing

the two length scaleB, and Py, of spinodal dewetting and
d;eterogeneity, respectively, we find that patterns are not

inned to heterogeneities on a much smaller scale Ehan
and that smalleP. need weaker heterogeneities to pin the

gattern. In consequence, templating can be best controlled by

choosing the initial mass of fluid which yields the smallest
P., i.e., the film thickness where the derivative
—dnnf(h,X)|7 is maximal (for constantG), see also Ref.
[27]. The transition from coarsening to pinning is hysteretic,
giving rise to an extended region where the desired pinned
pattern coexists with coarser structures. Our results and the
methodology also apply to other strategies of stabilizing a
periodic pattern including introduction of anisotropy or con-
vective flows[28].
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